
AD-A253 641

Technical Document 2282
April 1992

An Implementation
of the MVDR
Beamformer on
-the Intel iWarp
System

.Z.Lou DTIC
JUL 3 0 1992BI

Approved for public release; distribution Is unlimited.

92 7 21579

(th, D_ 92-20343... IIIIIIII II III. .lii .l i i .. .

Technical Document 2282
April 1992

An Implementation of the
MVDR Beamformer on the

Intel iWarp System

J. Z. Lou

NAVAL COMMAND, CONTROL AND
OCEAN SURVEILLANCE CENTER

RDT&E DIVISION
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN R.T. SHEARER
Commanding Officer Executive Director

ADMINISTRATIVE INFORMATION

The work described in this report was sponsored by the Office of Naval
Technology, Office of the Chief of Naval Research. The work was done under
program element 0602314N, accession number DN308291.

Released by Under authority of
G. L. Mohnkern, Technical Staff J. A. Roese, Head
Signal and Information Signal and Information
Processing Division Processing Division

ACKNOWLEDGMENTS

The author thanks Dr. Gary Mohnkern for his suggestions and encouragement
on this work. The author also thanks Dr. Aram Kevorkian and Tom Adams for
some useful discussions.

LH

CONTENTS

1 INTRODUCTION .. 1

2 BEAMFORMING AND THE MVDR BEAMFORMER 2

3 THE iWARP ARCHITECTURE AND INTERPROCESSOR
COMM UNICATIONS ... 5

4 A PARALLEL CHOLESKY ALGORITHM IMPLEMENTATION 7

5 A PARALLEL QR ALGORITHM AND ITS IMPLEMENTATION 10

6 A PARALLEL MVDR BEAMFORMER IMPLEMENTATION 13

7 PERFORMANCE MEASUREMENTS 16

8 REMARKS AND FUTURE INVESTIGATIONS 18

9 REFERENCES ... 19

APPENDIX A-MVDR CODE ... A-1

TABLES

1. Performance measurements for a Cholesky factorization 16

2. Performance measurements for a QR factorization 16

3. Performance measurements for a MVDR with QR 17

4. Performance comparisons for Cholesky, QR, and MVDR 17

Aooession For

NT T

DTIC QUALITY INSPECTED Z

IDi :t r ,:. io:

I Av tY::d- I t. 7 Codes

- -'~x:J.and/or
Diat Special

1A

1 INTRODUCTION

Beamforming is a classical technique used in array signal processing to determine the
location of a source that is radiating energy. A large number of sensors needs to be used
to obtain sufficient gain and thus accurately detect a distant target. The computational
complexity of a beamformer increases as the number of sensors used increases. Parallel
processing is the obvious choice when a large number of sensors is used. In section 2, we
give a brief description of beamforming and the Minimum Variance Distortionless Re-
sponse (MVDR) beamformer. In section 3, we discuss the iWarp architecture and the
node connection topologies we used. Sections 4, 5, and 6 discuss implementations of
Cholesky, QR, and MVDR algorithms, respectively. Section 7 presents performance
measurements from those implementations. The last section gives a brief summary and
discusses some future investigations. The complete MVDR code for running on a fully
connected network of four processors is also included as appendix A.

1

2 BEAMFORMING AND THE MVDR BEAMFORMER

In this section, we give a brief description of beamforming and a derivation of the
MVDR beamformer. For a detailed discussion on the subject, see references 1 and 2. We
assume a plane-wave signal s(t, x) is propagating in a medium with the form at a spatial
location z and time t:

x(t) = t +Z)

where -0 is the direction of the propagating w and c is its speed. We also assume
there is an array of n sensors present in the medium. Each sensor will record the acoustic
field at its spatial position with little interference with each other. Thus the waveform
measured at the spatial position z of the ith sensor, denoted by xi (t), is given by

x,(t) = t + zi ') +

where N, (t) is additive noise measured at z,.

In using beamforming to determine the direction o of an acoustic source, the outputs
of the sensors are summed with weights and delays to form a beam y(t):

y(t) = axi(t- r)

The basic idea of beami,..ning is to adjust the sensor delays so that a signal presumed to
be propagating in direction - will be reinforced, and signals propagating from other
directions will not. The ideal case is that each sensor delay r, cancels the signal delay
zi. o Ic so the signal would be completely reinforced. To search for the source signal, the
energy in the beam y(t) is computed from many directions-of-look k by manipulating the
delays trm* The maxima of this energy as a function of k correspond to the acoustic
sources.

To compute the beam energy in the frequency domain, we take the Fourier transform
of the beam. For a single propagating signal, the Fourier transform of the beam, denoted
Y(f, k), is given by

Y(f,k) = S() >aiexp[-j2r(f/c)z• -

where S(f) is the Fourier transform of the signal s(t).

The energy in the beam can be computed by evaluating IY(f, k)I2df. For a narrowband
signal with all its energy concentrated at the frequency fo, the beam energy P(k) is given
by

P(k) = IY(fo, k)12 = a a 0p -j zi • (k-o

where or, is a normalizing factor of the signal.

2

It is now convenient to write equation 1 in matrix form. Define the column vector X to
be the temporal Fourier transforms of the array outputs (the signal data vector) and the
"steering vector" A to have elements

Ai = a expj2-zfi * k].

Then Y(f, k) = A'X, where ' denotes the conjugate transpose. The energy in the beam
when steered in direction k is given by

P(k) = E[IY(fk)121 = E[IA'Xl2] = A'Rc A, (1)

where RC = E[XX'] is the spatial correlation matrix of the sensor outputs. For a general
narrowband signal, its spatial correlation matrix RC in the presence of noise can be written
as (see reference 1)

= E[(X + N)(X +

where X and N are vectors related to array outputs of signal and noise, respectively.
Clearly, the quantity E(XX') is hard to compute. In practice, R, is often estimated by XX',
where X is an m x n matrix with m < n. The row dimension m is the number of sensors
and the column dimension n is the number of "snapshots" in time.

MVDR beamforming is a high-resolution array signal processing algorithm. It is
derived by finding the steering vector A that yields the minimum beam energy subject to
the constraint that A'E = 1, where E represents an ideal plane wave corresponding to the
direction-of-look. The purpose of the constraint is to fix the processing gain in the direc-
tion-of-look to be unity. The minimization of the resulting energy thus reduces the contri-
butions to this energy from sources and/or noises not propagating in the direction-of-look.
This constraint minimization problem can be converted to a global minimization problem
by using a Lagrange multiplier. Thus we need to find a vector A that minimizes the
quantity

A'RCA + a(A'E - 1).

It is not hard to find the solution A to be

R-'E
E'R 1E

Therefore, the energy in the beam when steered in the direction-of-look determined by E
becomes (see equation 1)

1
PMVDR ((2)

(E'Rc IE)

Equation 2 provides the quantity that we need to compute on a distributed-memory
machine. To find a radiating source, we compute the spatial energy spectrum by evaluat-
ing equation 2 for many direction-of-look Es and determine the location of local maxima.

3

In general, the correlation matrix R, is complex. For the simplicity of data structures, but
without loss of generality for our purpose, we used real matrices in our parallel algorithm
implementations. Clearly, we also need to assume that the matrix R, is invertible. In our
implementation, we assume X is full-rank. One approach to compute the right-hand side
of equation 2 is to do a Cholesky factorization on the matrix R,. Another approach is not
to form the matrix RC = XX' and compute R-1. Instead, a QR factorization on X is per-
formed. The second approach has some advantage in terms of numerical stability. We
implemented both parallel Cholesky and parallel QR algorithms and compared their
performances. For the MVDR beamforming computation, we used the QR approach.

4

3 THE iWARP ARCHITECTURE AND INTERPROCESSOR
COMMUNICATIONS

The iWarp system is a distributed-memory, scalable, multiple-instruction, multiple-
data (MIMD) parallel computer. The system is equipped with an interesting communica-
tions library that supports systolic communications between its processors. Since the sys-
tolic communication mechanism on iWarp offers "door-to-door" data transfer between
CPUs on different processors instead of going through local memories, the iWarp system
should be ideal for fine-grain (communications-intensive) applicetions, for example the
digital signal and image processing applications. The system we used has 64 processors
(or nodes) that are physically connected into a two-dimensional toroidal mesh. The front-
end machine is a Sparc workstation that contains a Sun Interface Board (SIB). The SIB
can be used either as a special 1/0 node or just as other nodes on the system.

Each iWarp node consists of three distinct components: a computation agent, a com-
munication agent, and a local memory unit. The computation agent performs the normal
programmed computation. The communication agent handles the 1/0 from/to adjacent
nodes. The local memory unit provides access to local memory for both the computation
and communication agents. Each node on the system has a 0.5-megabyte base memory,
which can be upgraded in 0.5-megabyte increments. Independent communication and
computation agents make it possible to overlap communication and computation. Nonad-
jacent nodes in the array can communicate without necessarily disturbing the computation
on intermediate nodes.

Each iWarp processor has an upper-limit speed (or "peak performance") of 20
MFLOPS on single precision floating-point operations and 10 MFLOPS on double preci-
sion operations. The bandwidth of interprocessor 1/0 is 40 megabytes per second. So
roughly speaking, a minimum of four single precision operations are needed on each
word (4 bytes) of data being sent to gain through parallelism.

Interprocessor communications are realized using the message-passing mechanism
provided by the PathLib library on the system (references 3 and 4). To do message pass-
ing in a C program, one first needs to create connections. The message passing along the
created connections is done by calling a send or receive function in the PathLib. Unlike
some other parallel systems (e.g., the Intel Touchstone), the task of routing a certain
user-specified connection topology on the iWarp is left entirely to the programmer. In
other words, the programmer is responsible for explicitly specifying the routes to be es-
tablished for the connection topology; the programmer must also appropriately allocate
resources required for the type of connection he chooses. This lack of "automatic routing
by the system" clearly puts some lower level programming burden on the programmer.
The gain from this kind of system design is the flexibility and efficiency to be explored by
a programmer for his particular applications. Though there are some programming tools
available for some simple image processing applications, it is difficult, at least at this
time, to get decent performance on the iWarp for most signal and image processing
algorithms by using these tools. We did all our implementations in C using the PathLib.

5

To establish a communication channel between a pair of iWarp nodes, called the
logical channel in the iWarp system manual, a few things must be done: initializing the
PathLib, allocating Pathway Control Table (PCT), requesting/accepting connections, and
identifying incoming connections. Some care is needed to avoid PCT allocation conflict
when one wants to set up a richly connected topology.

To send or receive a message over a logical channel, the programmer needs to bind an
input gate or output gate to a proper handler, which is returned by the request or accept
connection function calls. A message can be delimited by a header and a trailer. Though
it may not be necessary to use a header and a trailer for a simple communication style
(e.g., a unidirectional ring connection), they are useful for more complex communication
requirements.

In our implementations, we used a unidirectional ring topology and a fully connected
network topology. In the unidirectional ring topology, each processor has a unidirectional
communication channel with its two neighbors. Each processor can send messages to its
downstream neighbor and receive messages from its upstream neighbor once the direction
of the ring is determineu. This type of sparsely connected topology is suitable for applica-
tions that require pipelining communications. The communication overhead will be arge
if a processor wants to send messages to a distant processor on the ring. In the fully
connected topology, we set up a bidirectional connection between each pair of processors.
Thus only nearest neighbor communications are required with such a topology. There are
two reasons for choosing these two extreme cases of connection topology: (1) we want to
test the feasibility of setting up various connection topologies; the success of making these
two connections should give us the experience for making a variety of other interesting
connection topologies, and (2) we are also interested to see the performance difference in
our applications using these two connection topologies.

6

4 A PARALLEL CHOLESKY ALGORITHM IMPLEMENTATION

As mentioned in section 2, the Cholesky factorization can be used to compute the
right-hand side of equation 2. Since the correlation matrix RC is symmetric (we only
consider the real matrix), it has the Cholesky factorization RC = GG', where G is a lower
triangular real matrix.

To design a parallel algorithm for computing the Cholesky factorization on an unidi-
rectional ring topology, we first need to make a decision on how to partition and distribute
the matrix. We choose to partition the matrix by columns. Let us assume we want to use p
processors on the system. A partition of an m x n matrix (for the simplicity of notation,
we assume n can be divided by p) could be

Rc = [R1,R 2 ,'" ,Rk],

where R, s are m x p submatrices and kp = n. We use the letter k in all our algorithms to
be the number of column partitions. We distribute the jth columns (j = 1 ... p) of the
submatrices R, (i = 1, ... k) onto the processor j. Thus the processor j will hold columns
with indices j, j + 1, ., j + (k - 1)p. A more concrete example should explain this
approach better. Suppose we have a matrix written in column notation

A = [al,a2, a

where a, s are columns of A. After partitioning and distributing the matrix A onto four
processors using our approach, processor 1 contains al and a5 , processor 2 contains a 2

and a6 , processor 3 contains a 3 and a 7, and processor 4 contains a 4 and a,.

This approach of partition and distribution of matrix columns is clearly suitable for a
column-oriented parallel Cholesky algorithm, where m = n.

Comparing the jth columns of both sides of the equation R, = GG', we get the vector
equation

Rc(:,j) = > G(:, i)G(j, i)

where : is a range symbol that, when no range is explicitly specified, implies the entire
row or column dimension. We obtain from the above equation

j-1

G(: n,f)G(j) = RCj: n,j) - ("n,)G(, i) =- a(: n)
i=1

Since G(, J) = a(j), it follows that G(j : n, J) = a(j n)/o(f(). So a column version of the
(nonparallel) Cholesky algorithm is as follows:

Column Choleksy Algorithm

for j = 1: nai : n) --- R,(j : n,j)
for i = : j- 1

for k = 1: j - 1
a(k) = a(k) - G(k, i)G(j, k)

end
end
G(j : n,j) - a(j :n)/

end

We now describe a parallel Cholesky algorithm based on the above column algorithm,
which can be found in reference 5. Note that in the column algorithm, we need to com-
pute

j-1

a(j :n) = R (j:n,f) - G(j :n, i)G('j, ,
i=1

followed by the scaling GU" n, j)-uj : n)I/_(i . Suppose each of the p processors holds
k column vectors of RC as described at the beginning of this section. The task of each
processor is to overwrite these k columns with the nonzero portion of the corresponding
columns of the Cholesky factor G. Notice that a column G(j n, J) .;nerated by one
processor is generally needed by all the other processors. So a column G(j : n, J) gener-
ated by a processor Proc(i) will be circulated around the ring. At each stop, the visiting
G(n, J) is incorporated into all the local o(i) for i> j.

By counting the number of received G(j n, j) columns, a processor can determine
whether it is its turn to generate a G(j n, J) column. For example, if Proc(i) has received
i - 1 columns and i E {i, i + p, ... , i + (k - 1)p}, then it knows that it is its time to
generate G(i : n, i). Here is the ring parallel algorithm for the processor i:

Ring Parallel Cholesky Algorithm

*-- 0, j +- 0, ji - 1;
last 4-i- (k-1)p;

while j 0 last
ifs + 1 E {i, i+P,...lastl

j *-- + 1;
Generate G(j nj) in gt,(j n) and copy it into Rtwc(j: njj);
ifa < k

send(gj,,(j : n),right);
update Rio,(:,j, + 1 : k);

end
.i = j, + 1;

else
receive(g1oc(s + 1 : k, left);
if a + 1 E {right, right + p,..., right + (k - 1)p}

send(g91,(a + 1: n), right);
end
a -- a + 1;
update Riot(:, j, : k);

end
end

A few remarks on the variables appearing in the above algorithm are in order. At the
beginning of each while loop, the variable s indicates the largest global column index
among those columns that have been overwritten by their corresponding G columns. The
variable j is used to simplify the notation for s + 1. The variable j, points to the next

8

column of R10 C that will produce a G(j : n, j) column. Also note that a processor does not

send the circulating gioc to its right neighbor if its right neighbor is the generator of gloc.

We implemented the above ring parallel algorithm on the iWarp system with a maxi-
mum of 16 nodes. It is possible to write a program that is scalable on the number of
processors. The amount of physical memory on each node does put a constraint on the
size of the problem we can test, and thus the number of processors to use. The current
software on the system supports the message passing in the unit of a word in a C program
(see reference 6). We therefore wrote a few functions that enable us to send and receive a
message with a length of arbitrary number of bytes. After a ring connection of nodes are
set up using logical channels, we assign each node a ring ID. The above parallel algorithm
can thus be im-,lemented on the system without any modification.

9

5 A PARALLEL QR ALGORITHM AND ITS IMPLEMENTATION

QR factorization is another way to compute the quantity in equation 2. Note that the
correlation matrix is the product of the data matrix X with its transpose. So we can do the
QR on X, which, in our implementation, is assumed to be a full-rank real matrix. As will
be shown in the next section, we need to store both Q and R factors to compute the
MVDR beamforming. There are several approaches to do the QR factorization on the
matrix. Since we assume X is full-rank, we can use a QR algorithm without column-pivot-

We use the Householder transformation method, which has been shown to be numeri-
stable (reference 7). Given a matrix A E ,,xi with m a n, the sequential algorithm

in reference 7 as follows:

The Householder QR Algorithm
for 1:n

vkj :m) +- house(A(j : m, j));
A(j : r : n) .- row.house(A(j : m, : n),u(j :m));
ifj < m

A(j + 1: ej) 4-- (j + 1 : m);
end

end

In the algorithm above, the function house(x), where x is an n-vector, computes
n tor v such that (I - 2vv'l/v'v)x is zero in all but the first component; the function
row.house (B, x) overwrites the matrix B with PB, where P = I - 2V'/t'V.

In our ring QR implementation, the input matrix is partitioned and distributed among
processors in the same way as we did for the Cholesky factorization. With some modifica-
tions to the ring Cholesky algorithm, we have the following ring QR algorithm for the
processor i:

A Ring Parallel QR Algorithm
& *-- 1, j +- 1;
last .- i + (k - 1)p;
nezt-rid -- (i + 1) mod(p);
neztlast 4- nezt-rid + (k - 1)p;
while & < n

ifa E {i, i + p,..., lait)
v(j: m) 4- house(A.,(j : m, j));
Store i'(j: m) into Q(j : mj);
,end(v(j : m,), right);At,.(j : ,,j : k))
4- row.house(Ai (j : m,j : k)),v(j : m));

+ 4- i+,2 -- . + 1;

-continued

10

else
receive(v(j : n), left);
if a V {nezt-rid, nezt-rid + p,..., nezt-last}

send(v(j :), right);
end
Store v(j m) into Q(j:
if a < last

A,(j :m,j : k)
+- row.house(Aj,,(j : m,j : k)),v(j : m));

end
3 - .5 +1;

end
end

Again we need to explain the variables in the above algorithm. The variables s, j, k,
and last have the same meanings as in the ring Cholesky algorithm. The variables nextrid
and nextlast are the ring ID and the largest global column index for the processor on the
ring that is to the right of ith processor. A10C is to be overwritten by the partial factor R,
and Q is used to store the orthogonal vectors v. The ring QR algorithm has a similar
structure to the ring Cholesky algorithm. Since we need to store the matrix R and the
whole matrix Q (in the form of vectors v's on each processor), the variable s for the while
loop now runs from 1 up to the column dimension for the input matrix A. If s is not less
than last, we only store the received vector v into Q and do not update A1oc. In generating
v(i m), we normalized A10 (: m, j) by its I I. norm to avoid overflow or underflow.

The above ring QR algorithm is rich in the level-2 operation of matrix-vector multipli-
cation, but not rich in the level-3 operation of matrix-matrix multiplications; the latter
operation is more desirable for reducing the memory traffic on many high-performance
architectures. Using the idea of block Householder QR factorization (reference 7), we can
modify the above ring QR algorithm to get more level-3 operations. The idea stems from
the fact that a product of n x n Householder matrices Q = Q... Q, can be written in a
form called the WY representation

Q = I + WY,

where W and Y are n x r matrices. More specifically, given an orthogonal matrix
Q = I + WY' and a Householder matrix H = I -2vv'/Vfv, we have

Q 1 = QH = I + W1Y'1

where W, = [W, w] and Y = [Y, v] with w = -Qv /v'v. For a derivative of this, see reference
8. The basic idea of the block Householder QR is to form a product of Householder
matrices using the WY representation and then apply this product to the remaining un-
updated columns. The block Householder QR algorithm can be found in reference 7 or 8.

To incorporate the block QR into our ring QR algorithm, we may modify the while
loop as follows. When if j E {i, i + p, ... , last} is true, we only update the jth column in
the processor i. The W and Y matrices are updated in each while loop. At the end of each
while loop, we check the global counter s to determine if we need to do a block update on

11

the local columns [s mod(p) + 1, -. , k]. The function row.house also needs some obvious
modification. The modified ring block QR algorithm is as follows:

A Ring Block Parallel QR Algorithm
S 4- 1, j - 1;

lait .- i + (k - I)p;
W 4-- I, Y 4- I;
nezt.rid - (i + 1) mod(y);
neztjaat 4 nezt.rid + (k - 1)p;
while a < n

if aE {i,i+p,...,last}
v :m) --- house(Alj,(j :mj)

Update W and Y using v(j: m);
Store v(j : m) into Q(j : r, j);
jend(v(j: m), right);
A,,,(j : me, j))

4- row.house(Aj,.(j : m, j)), v(j: m));
#-- a + 1, 3 - 3+ 1;

else
receive(v(j : m), left);
if a 0 {neztrid, nezt.rid +.. . , nezt-laat}

,sendCi(j : m), right);
end
Update W and Y using received v(j : m);
Store v(j : m) into Q(j : m,j);

end
if ((a mod(p)) = 0 and a < lait;

Ai(a + 1 : , alp+ 1 :k)
#- row.house(A,.(a + 1 : m, a/p + 1 : k)), I + WY');

end

end

We implemented the ring QR on the iWarp system. The modified block version has
not been implemented at this moment since we are not sure that our current system can
do level-3 operations more efficiently. We also implemented QR on a fully connected
network of nodes. An easy modification to the ring QR algorithms produces a QR
algorithm for the fully connected topology. We will discuss more about full connection in
the next section.

12

6 A PARALLEL MVDR BEAMFORMER IMPLEMENTATION

We first show what needs to be computed for a MVDR beamformer using the QR
factorization. As shown in section 2, we want to compute (ER E) - '. Since RC = XX' and
X = QR, we have

~=
= (E'(-')-'(Qa)- '

= ((-'QE)'(-'QF,))' =(z'z)-1,

where z = R-1Q 'E = R-1 QE since Q is symmetric. Thus we see the MVDR computation
using QR consists of a QR factorization, a matrix multiplication of Q with the direction-
of-look vector E, and a solution of an upper linear triangular system z = R-1 y.

In the last section, we discussed implementation of QR factorization. Now we want to
find a parallel algorithm for the solution of a linear triangular system. Reference 9 gives a
detailed discussion of several parallel triangular system algorithms, which are based on
the following basic sequential algorithms:

Two Triangular System Algorithms

for i= 1:n forj = 1 :n
for j= 1: i - I zf = bj/LI

bi bi - zj/-ij for i = j + 1 : n

end bi = b - ziLi$
zi = b1/Lu end
end end

The algorithms presented above are for lower triangular systems. But an index rever-
sal in these algorithms can make them work for an upper triangular system. Using the
terminology in reference 9, the algorithm on the left is called a scalar-product algorithm,
and the algorithm on the right is called the vector-sum algorithm. If our sole task were to
solve a triangular system on a parallel machine, we could partition the matrix by either
columns or rows. To explore parallelism from the above algorithms, we have the choice
of partitioning the work in the inner loop or the outer loop. So there are many possible
parallel algorithms. Since we have to solve a triangular system following the parallel QR
factorization, we do not have the freedom of choosing a matrix partition. In fact, we must
use the column partition of the upper triangular matrix R, which is already distributed
among processors after the QR factorization is performed. We also decide to parallelize
the inner loop for a relatively simple implementation. It turns out that the algorithm on
the above left can be used as the basis to construct an algorithm, called the "fan-in
scalar-product" algorithm in reference 9, which parallelizes the inner loop and requires a
column partition of the matrix. The resulting algorithm, with "fan-in scalar-product"
implemented on a unidirectional ring, is as follows:

13

The Ring "Fan-In" Triangular System Algorithm

for i= 1: n
a=0
forj = 1 i - 1

if jE{rid,rid+ p,...rid+ (-1)p}
a -+ L= s ;

end
if #1

newvid = rid - map(i);
if new-id < 0

new-id = newuid + p;
if new..id = 1

send(&, right);
if newuid = 0

receive(buf et, left);
£ = a + buffer;

end
if newid # 0 and newid 6 1

receive(buf ler, left);
a = a + buffer;
send(., right);

end
end
if , E rid, rid+ p,...,,rid + (k - 1)p}

Zi= (b. - s)/L,.

end
In the above algorithm, rid is the ring ID for node i. The map(t) is the ring ID for the

node that contains ith column of the matrix. The statements in the if i # 1 section consti-
tute the "fan-in" operation. In each loop, what the "fan-in" operation does is to send all
partial updates of b, to the node with ring ID map(i). With a unidirectional ring connec-
tion, we implemented the "fan-in" by computing a new id that is the "distance" from the
current node to the node map(O. Once this newid is computed, it is easy to decide what
each node needs to do in this "fan-in" operation. As can be seen from thi lgorithm, the
parallelism comes from computing the partial updates of bi; the unkno.~,n xs are still
computed sequentially.

The main disadvantage of a ring connection of nodes is the communication overhead.
For a unidirectional ring with n nodes, its diameter is n 1. For a full connection of n
nodes, its diameter is 1. So for a "fan-in" operation, the unidirectional ring connection is
less efficient than for a full connection because the former requires more intermediate
steps for passing a message around. Though it requires more work to set up a full connec-
tion of nodes, at least on the iWarp system, it is easy to modify our QR and triangular
system ring program so that they run on a full connection of nodes. We do not list the
corresponding algorithms for a full connection of nodes (they are simpler and have
similar structures to the ring algorithms). We just give their performance results in the
next section.

14

With the parallel QR and the parallel triangular system subroutines, we can now give
the whole program for computing the MVDR beamforming with n direction-of-look
vectors {El,'E 2, • •, E as follows:

A Parallel MVDR Beamformer Program

Set up connection network of nodes on the system;

Dynamic memory allocations on each node;

Input array output matrix X to node 0;
Distribute appropriate portions of X to each node on the network;

Perform a parallel QR factorization on X;

for i = 1 : n
Input direction-of-look E, to node 0;
Broadcast E, to each node on the network;

Compute in parallel z = QE i ;
Compute in parallel s = R-1 z and S2"

Gather components of S2 from each node on the network to node 0;

Output 1/s 2 from node 0

end
We used dynamic memory allocation in the above program. Allocating memory at run

time makes the program more robust and storage structures more flexible. We assume
that node 0 is the only processor that does external 1/0. We also see that no explicit
global synchronization is needed to ensure the parallel program function correctly as long
as every interprocessor message passing proceeds correctly.

15

7 PERFORMANCE MEASUREMENTS

In this section, we present performance measurements on the iWarp system of the
parallel algorithms we have discussed. All floating-point operations were performed using
single precision. Because each node on our current iWarp system has 0.5 megabyte of
physical memory, we choose the data matrix X for performance measurements to be 128
x 128. We first want to point out that, with the current software release (e.g., the com-
piler) on the system, the iWarp node performance on a C code is low compared with its
theoretical (peak) performance. For example, we have run a matrix multiply C program
on a single node with available optimizations and obtained a performance of about 0.65
MFLOPS. Hence, we do not expect good MFLOPS performance from our parallel pro-
gram on the iWarp system. Relatively speaking, the iWarp system has good bandwidth for
interprocessor communications. It is interesting to see the speed-ups we can get from our
parallel algorithm implementations on the system. For comparison, we also measured
corresponding performances on a Convex C-240; we just used one vector processor on
that system. Using the usual terminology in parallel processing, speed-up is the ratio of
performance on a single processor to the performance on multiple processors, and
efficiency is the ratio of speed-up to the number of processors used.

Table 1 lists the performance measurements for a Cholesky factorization using a uni-
directional ring connection. It shows that we got a speed-up of 3.3 and an efficiency of
83% using 4 nodes; we got a speed-up of 7.1 and an efficiency of 44% using 16 nodes.

Table 1. Performance measurements for a Cholesky factorization.

Cholesky Factorization (128 x 128)
Machine # Processors CPU time (seconds) Speed-ups

iWarp 1 2.00

iWarp 4 0.60 3.3

iWarp 16 0.28 7.1

Convex 1 0.09

Table 2 lists the performance measurements for a QR factorization using a unidirec-
tional ring connection. It shows a speed-up of 3.6 and an efficiency of 90% using 4 nodes;
a speed-up of 10.3 and an efficiency of 64% using 16 nodes.

Table 2. Performance measurements for a QR factorization.

Cholesky Factorization (128 x 128)
Machine # Processors CPU time (seconds) Speed-ups

iWarp 1 7.20

iWarp 4 2.00 3.6

iWarp 16 0.70 10.3

Convex 2 0.22

16

Table 3 lists the performance measurements of a MVDR with QR using a unidirec-
tional ring connection. In performance measurements for MVDR, we use only one direc-
tion-of-look vector E in the program. It shows we got a speed-up of 3.3 and an efficiency
of 83% using 4 nodes; a speed-up of 5.8 and an efficiency of 34% using 16 nodes.

Table 3. Performance measurements for a MVDR with QR.

Cholesky Factorization (128 x 128)
Machine # Processors CPU time (seconds) Speed-ups

iWarp 1 11.5
iWarp 4 3.50 3.3

iWarp 16 2.00 5.8

Convex 1 0.40

Table 4 lists the performance comparisons for Cholesky, QR, and MVDR using a full
connection of four nodes with a unidirectional ring connection. For the Cholesky algo-
rithm, its performance on a full connection of nodes is about 30% faster than its perform-
ance on a ring connection. For the QR algorithm, we do not see much performance
difference between a full connection and a ring connection. The performance difference
for MVDR is about 20% with a full connection over a ring connection.

Table 4. Performance comparisons for Cholesky, QR, and MVDR.

Comparisons between Full and Ring Connection Using Four iWarp Processors
Application Type of Connection CPU time (seconds)

Cholesky Ring 0.60
Cholesky Full 0.43
QR Ring 2.00

QR Full 1.93
MVDR Ring 3.50

MVDR Full 2.80

17

8 REMARKS AND FUTURE INVESTIGATIONS

The design of iWarp node architecture and the system physical network as a two-
dimensional mesh is intended to make it suitable for both fine-grain computations and
coarse-grain computations (reference 3). For the matrix size we used, our problem may
be seen as a fine-grain application. We think the good speed-ups on Cholesky and QR
factorizations using four nodes show the iWarp system's communication bandwidth is
fast. It is also reasonable to see that efficiency goes down as the number of nodes
increases on a unidirectional ring, since, except for some hignly pipelined types of appli-
cation, the communication overhead increases with a Irger ring radius. We expect the
efficiency of our application would be greater on a more richly connected topology like a
bidirectional ring or a two-dimensional mesh. Due to the tedious work involved in ng
a fully connected network of nodes, we only set up a fully connected network containing
four nodes to compare its performance with a unidirectional ring. Though we do not see a
significant performance difference on the QR factorization, which implies the communi-
cation overhead is very small for that application on a four-node ring, we see an obvious
performance difference on the MVDR. This difference clearly came from the tri igular
system solver. It seems to us that the parallel triangular system algorithm is "finer grain"
than is the parallel QR algorithm, so the former should perform better oil a more richly
.)nnected topology.

Compared with the performance of some vector machines in a high-level language
code (like C or Fortran), we find our current iWarp system is still not a fast machine.
This is not surprising considering the fact that each iWarp node is not a vector processor
and the software technology for the system is not very mature yet. At this time, however,
we can use the iWarp system to test and evaluate parallel algorithms using different
connection topologies and gain parallel programming experience.

We think a few things are worth trying on the iWarp system in the near future. It
would be interesting to try a larger size problem and thus use more processors for per-
formance testing, which may require us to upgrade memory on at least some of the
processors. We are also interested in developing and implementing systolic algorithms
that use two-dimensional mesh-a natural choice for the iWarp system. We would also
like to modify and run our application codes on the Intel Touchstone system so that a
performance comparison can be made for these two parallel MIMD machines.

18

9 REFERENCES

1. Johnson, D., "The Application of Spectral Estimation Methods to Bearing Estimation
Problems," Proceedings of the IEEE, vol. 70, no. 9, September 1982.

2. Johnson, D. and D. Dudgeon, "Fundamentals of Array Signal Processing," Lecture
Notes, Rice University, 1990.

3. Intel Corporation, iWarp Programmer's Guide, September 1991.

4. Greer, B., A Tutorial on Using iWarp PathLib, Intel Corporation, October 1991.

5. Van Loan, C., "A Survey of Matrix Computation," Theory Center Technical Report,
Advanced Computing Research Institute, Cornell University, Ithaca, NY.

6. Intel Corporation, iWarp C User's Guide, September 1991.

7. Golub, G. and C. Van Loan, Matrix Computation, The Johns Hopkins University Press,
1989.

8. Bischof C. and C. Van Loan, "The WY Representation for Products of Householder
Matrices," SIAM J. Scientific and Statistical Computing. vol. 8, no. 1, January 1987.

9. Heath, M. and C. Romine, "Parallel Solution of Triangular Systems on Distributed-
Memory Multiprocessors," SIAM J. Scientific and Statistical Computing, vol. 9, no. 3,
May 1988.

19

APPENDIX A

MVDR CODE

A-i

* A Head File for .VDR Beamformer

?include <sys/time.h>
#include <stdio.h>
#include <math.h>
#include <iwarp-cc.h>
#include <gates.h>
#include <regnums.h>
#include <asm/gen asm.h>
#include <asm/pwasm.h>
#include <pathlib/pl.h>

/* Define the-scale of the problem
#define maxcell 4 /* total number of iWarp cells to use */
#define rdim 128 /* row dimension of data matrix A */
#define cdim 128 /* column dimension of data matrix A */
#define srdim rdim /* row dimension of storage */
#define scdim cdim /* column dimension of storage */

/* Define date type */
typedef float* vector;
typedef vector* matrix;

/* Function declarations */
void maino;
void fl connt(;
void de-connt(;
void assignchan);
void send a buf(;
void receive a buf(;
void input AT)-
void get space() ;
void distributeA();
void distribute-xv(;
void qr();
void store qq(;
void gen_gT);
int imax(;
void update();
void mvdro;
void tri-solver();
void gather_g();
void print_go;
void printqqo;

/* Other global definitions */
char *malloc(;
int cellid, ringid;
int elsize; /* size of a double precision variable */
int c[maxcell];

A-3

" A Four-Processor Pros ram Ulsi ng Pathlib Communication to Twnplcmcnt
" a MVDR beamformer using a Ring Connection.

" Input: a data matrix A and a column vector (dircction of look) x.
" Output: x'inv(AA')x (means transpose). x has dimension of row(A).

*Computation procedure:
* 1) A =QR, Q = orthogonal, R = upper-triangular;
* 2) form the quantity z = inv(R)Q'x;
* 3) compute b = z'z;
* 4) output b.

/* This file contains maino, ringo, dering(), send_a-bufo,
receive_a_bufo. */

#include 1"mvdr.h11 /* mvdr.h contains 'include files' and
global declarationE *

long sec, usec;
int i chan, o chan, headers, header-count;
float-axe timei
struct tirneval tpl, tp2;
struct timezone tzpl, tzp2;

void main()

/* variables definitions *
matrix a; /* data matrix A or data sub matrix of A *
matrix qq; /* triangfular Q factor matrix (for storing ql, . . .,qn) *
vector xv; /* direction of look column vector *
mnt ncols;
float out; /* output value b *

/* Initialize Pathlib */
PL_-INIT(cellid, Oxfffc, Oxff);
plrpecnfigure(0x0030, OxOOcO, 0x0300, OxOcOO, OxfOOO);

elsize =sizeof(float);

ncols =cdim/maxcell;

/* Set up the Ring *
ringo;

/* Input matrix A and column vector xv to cell 0 and allocate
space for other cells *

if (ringid == 0)
input A(&a, &qq, &xv, srdim, scdim, ncols); /* input A to cell 0 *

else
get space(&a, &qq, &xv, srdim, ncols) ; /* allocate space for cells

other than cell 0 *

/* Distribute columns of A to appropriate cells *
distributeA(a, ncols);

/* Parallel computing QR decomposition begins .. *
qr(a, qq, ncols);

/* end of computing QR: R distributed in a's, Q stored in q*

1* Distribute vector xv to all cells *
distribute xv(xv, ncols)!

A-4

/* Parallel MVDR begins ...

mvdr(a, qq, xv, ncols, &out);

/* output MVDR value stored in 'out' *
if(ringid ==0)(

out = 1.0/out;
printf("*** output = %.4f ***\nl, ringid, out);

/* Destroy the ring connection *
de_ring();

exit (0);

/* main*/

/* Set up a ring with four cells *
void
ringo(

mnt next, o_dir;
int header;
int rowl_last=l, row2_first=8, row=8;

if (_cellid < rowi_last)
next = cellid + 1;
o dir =-PL DIR XR;
rIngid = _-CellTid;

if (_cellid == rowl last)
next =9;

o dir =PL DIR YD;
rIngid = _Eell-id;

if (_cellid == row2 first)
next 0;
o dir =PLDIRYU;

rIngid = 3;-

if (_cellid > rowi -last & _cellid I= row2_first)
next = cellid - 1;
o dir =PLDIRXL;
ringid =2

/* Set up logical channels to form a Ring *
/* Each cell does an accept and a create connection *

o -chan = p1_create-connection(GATEO OUT, o_dir, &next, 1);
(void) p1 produce message header(GATEO_OUT, 0);
i -chan = placceptEconnecEion(GATEl_IN, &header);
(void) p1 consume-message header(GATE1_IN, &header);

/* Ring *

void
de_ring()

/* Terminate the output channel *
(void) p1 produce message trailer(GATEOOUT);

A-5

(void) pl destroy -connection(ochan, GATEO OUT);
/* Terminate the input channel */
(void) p1 consume message trailer(GATE1_IN);
(void) p1 conclude_connecEion (ichan, GATEl IN);

void
receive a buf(pbuf, N)
char *p~ulf;
int N;

int qt, rd, k, ibuf;
int *ip = (tnt *) pbuf;

qt = N/4, rd =N - qt*4;
for (k=O; k<qt; k++)(

ibuf =receivei(GATE1_IN);

*ip++ =ibuf;

if (rd > 0)
char *pt;
char *cp =(char *)ip;
ibuf - receivei(GATE1_IN);
pt -(chiar *)ibuf;
for (k=0; k<rd; k++)

/* receive-a-buf *

void
-a buf(pbuf, N)
*pbuf;

tnt qt, rd, k, ibuf;
tnt *ip = (tnt *) pbuf;

qt = N/4, rd = N - qt*4;
for (k=O; kzqt; k++)

ibuf = *p+
_sendi(GATEO_OUT, ibuf);

(rd > 0)
har *pt = (char *)ibuf;

,har *cp = (char *) ip;
for (k=o; k<rd; k++)

_sendi(GATEO_OUT, ibuf);

/* send-a-buf *

A-u

" A few subroutines called by mvdr.c:
" strcpy(), inputA0, get spaceo, distributeA0, qro,
" gather go, print ro.
" a~j](i) is the element on jth column and ith row.

#include "mvdr.h"

void strcpy(sl, s2, size)
char *sl, *s2;
mnt size; /* number of chars in the string *

mnt i;
for(i=0; i<size; i++)

sl~iJ = s2[i];
/*stropy *

void
inputA(pa, qq, xv, in, cn, cols)
/* in, cn = row and column dimension of storage *
matrix *pa, *qq;
vector *xv;
int inn, cn, cols;

/* 1/0 files named 'stdino' and 'stdoutO' must exist in
the current directory. Using igo with -s option
to redirect stdin and stdout to stdino and stdouto *

matrix mp, mpl; /* mp, mpl are to traverse the matrix columns *
vector vp;
mnt i, j;

/* create an array of column pointers storage to store A (and output) *
*pa = (matrix) malloc(sizeof(vector)*cn), mp =*pa;

*qq = (matrix) malloc(sizeof(vector)*nn), mpl =*qq;

*xv = (vector) malloc(elsize*rdim); vp =*xv;

/* input matrix A */
for(j=0; j<cn; j++)

/* input a column vector *
mp~j) = (vector) malloc(elsize*nn);
for(1-0; i<rn; i++)

/* fscanL'(istdln, 11%i!", &mp[j j i]) ;*
if(i==j)
mp(j][i] =150;

else
mp(j](i) =1

/* input direction of look vector xv *
for(i=O; i<rn; i++)

vp[i] = (float) i;

/* allocate space for Q factor *
for(j=0; j<inn; j++)
mpl(j] = (vector) malloc(elsize*(rn -j + M);

/* last element of vector qq(jJ stores the norm squared of qqj

/* inputA *

A-7

void
get space(pa, qq, xv, rn, cn)
matrix *pa, *qq;
vector *xv;
int rn, cn;

matrix mp, mpl;
int. j;

/* create an array of column pointers storage *
*pa. = (matrix) malloc(sizeof(vector)*cn), mp *pa;
*qq = (matrix) malloc(sizeof(vector)*rn), mpl *qq;
*XV = (vector) malloc(elsize*rn);
for (1=0; j<cn; j+4-)

mp~j] = (vector) malloc(elsize*rn);

/* allocate space for Q factor *
for (j=o; j<rn; j++)

mpl(jJ = (vector) malloc(elsize*(rn - j + 1));
/* last element of vector qq~j] stores the norm squared of qqj

/* get space *

void
distribute_A(a, cols)
matrix a;
int cols;

matrix mp =a,

tmp =a; /* tmp is to arrange columns for cell 0 *
mnt i, j;
mnt num -send = maxcell - ringid -1

num recv = num send + 1;
floa t buf~rdim);*

if (ringid==O)
num_recv = 0;

/* the matrix A has cdim =maxcell*cols columns *

/send out columns from cell 0 *
if (ringid==0)

/* keep 1st. one of every maxcoll columns *
strcpy((char *) tnlp(i], (char *) mp[i*maxcell], rdiin*elsize);

for(j=O; j<num send;)++)
send-a-buf((char *)mp~j+l+i*maxcell], rdim*elsize);

/* receive and send columns on cells I= 0 *
if(num-recv)

for(j=0; j<num-recv; j++)

if(j==O)
receive-a-buf ((char *)mp(i], rdim*elsize);

else

receive a buf ((char *) buf, rdim*elsize);
sendauf((char *)buf, rdim*elsize);

/* index i *

A-8

/* distributeA *

void
distribute_xv(xv, cols)
vector xv;
Int cols;

int num send = 1, num_recv =1

if (ring'Id==Q)
num recv = 0;

if(((ringid+l)%maxcell) == 0)
num-send = 0;

if(num recv)
receive a 'buf(xv, elsize*rdim);

if(nurn_sejidY
send-a-buf(xv, elsize*rdim);

/* distribute -xv *

void
qr(ai qq, cols)
matri a. qq;
int cols;

" variable definitions:
" last -- global index for the last vector stored in proc(u).
" k -- global index of the column vector currently working on.

*j -- global index of last locally generated g-column.
*jl l- ocal index of next column of loacalA that will

* produce a g-column.

mnt last = ringid + (cols - l)*maxcell;
int next-rid =(ringid + 1) % maxcell;

/* next rid = ringid for the next cell on the ring *
mnt next -last =next-rid + (cols - l)*maxcell;
int k, jl, kp;
int i, nol;
matrix mp = a;
float *pt, norm;
float vplfrdim]; /* tmp. storage vector *

/* initializing index and pointer variables *
k = 0, jl = 0, kp = 0;
while (k < rdim - 1)

kp = (k - ring id) % maxcell;
if(kp==0) 1* its turn comes ~

/* generate a v column based on kth column and
copy it to vpl */
genq(mpfjl], vpl, k);
store qq(qq, vpl, k);
send a buf((char *) vpl, (rdim-k)*elsize);
updaEe-(a, vpl, j1, cols, rdim-k);
k++, jl++;

else

receive _buf((char *)vpl, (rdim-k)*elsize);
kp = (k - next-rid) % maxcell;
if(kp != 0)

A-9

send -a_buf((char *) vpl, (rdlm-k)*elsize);
store qq(qq, vpl, k);
if(k -<= last)
update(a, vpl, J1, cols, rdlm-k);

/* while *

/* qr *

void
store qq(qq, vpl, k)
matrix qq;
vector vpl;

int J1, nel;
float norm 0.0;

nel =rdim -k;

for(jl=0; jl<(rdim-k), jl++)
norm += vpl(jl]*vpl~jl];

qq~k](nell = norm;
strcpy((char *) qq~k), (char *)vpl, elsize*nel);

1* if(ringid==0)
printf(Ilk =%d, norm 2 .f \n", k, norm);
printf('vpl =\n;
for(jl=0; jl<nel; jl++)

printf("\n");
printf("qq(0J =\n;

printf("\n");

/* store_qq *

void
gen g(vp, vpl, j)
vecEor vp;
float vpl(J;
int j; /* jth column we are working on *

mnt i-0, n=0, ind=0;
float max, max2, sign = 1.0, norm =0.0;

ind = imax(vp, j, rdim);
if((max = vp~ind]) == 0)
printf("'max = 0!fl\n");

max2 = max*max;
for(i=j; i<rdim; i++)
norm += vp(iJ*vp~iJ/max2;

norm - sqrt(norn);
if(vpcj] < 0)

siqn = -1.0;
for(i=j; i<rdim; i++)

if(i==J)
vpl~nj = vp[i]/max + sign*norm;

else

A-10

vpl(n] =vp~i]/max;

/* geng

/* find the index of max component of v between n1 <= index < n2 *
int imax(v, n1, n2)
float *v;
int ni, n2;

mnt i, index = ni;
float val = fabs((double) v(nl.J);

for(i=nl; i<h2; i++)
if(val < fabs((double) v~i]))

val =fabs((double) v(i]);
index = i

return index;
)/* imax *

void
update(a, vpl, m, cols, nel)
matrix a;
float vpl(];
int m, cols, nel:
/* m - local column index of first remaining vectors to be updated *
/* nel = number of elements in received vector vpl *

matrix mp =a;

col = rdiin - nel; 1* column index of received column *

int Idx, /* global row index of a matrix element */
jdx, /* global column index of a matrix element *
jp, ip; /* indices for vector vpl *

float norm = 0.0, vx = 0.0;

for(j=0; j<nel; j++)
norm += vpl~jl*vpl(j];

/* update inth to cols-l'th columns: mp(m] -> mp(col-l] *
foroj=m; j<cols; j++)

vx = 0.0, ip = 0;
for(idx=jcol; idx<rdim; idx++)

vx += ipU][idx]*vpltip];
ip++;

vx = 2*vx/norn; /* coeff. *
ip = 0;
for(idx=jcol; idx<rdim; idx++)

mp~j](idx] - vx*vpl(ip];

/* update *

void
mvdr(a, qq, xv, cols, out)

A-11

matrix a, qq;
vector xv;
int cols;
float *out;

int i, j;
float cf =0.0, fbuf 0.0;
float *sol =(float *)malloc(sizeof(float)*cols);
int. nrecv 0;

/* compute Q'xv *
for(j=0; j<rdim -1: j++)

cf = 0.0;
for(i=0; ~I<frdim -);i++)

cf += xv~j+i]*qq(JJ(il;
cf = 2*cf/qq(j)[rdim - 3); /* qq~j][rdim - j] =norm squared

for(i=0; i<(rdim - i); i++) o qj

xv(j+i] - cf*qq(JJ(i);

/* now xv contains Q'xv *

/* if(ringid == 3)
for(i=0; i<rdim; i++)

printf("lringid %d: i = %d, xv~i] = 1.2f\n", ringid, i, xv[ijj);

/* compute inv(R)z, z = Q'XV */
/* each cell contains corresponding components of the right-hand side

vector computed from Qtxv *

tr!4_solver(a, cols, xv, sol);

*out = 0.0;
for (i=0; i<cols; i++)

*out += sol~i]*sol(iI;

printf("lringid = %d, out = %.2f\ni", ringid, *out);

/* collect output to cell 0 *
fbuf - 0.0;
if(ringid I= 1)
nrecv = 1;

if(ringid ==1)
send a_buf((char *) out, elsizo);

if(nrecv == 1 && ringid 1= 0)

receive -a buf((char *)&fbuf, elsize);
fbuf += *out;
send_a_buf((char *)&fbuf, elsize);

if (ringid==0)

receive-a buf((char *)&fbuf, elsize);
*out += fbuf;

if(ringid == 0)
printf(I"ringid = %d, total out =%.2f\nt , rinqid, *out);

/* mvdr *

A-1 2

/* for upper-triangular matrix *
void
tri solver(a, cols, xv, Sol)
matrix a;
mnt cols;
vector XV, sol; /* sol[cols) is the sub-solution vecter *

int. i j, idx, jdx, nid, mapi, nrecv;
mnt last =ringid + (cols - l)*maxceil;
float tmp = 0.0, fbuf = 0.0;

for(i=rdim-l; i>=0; i--)

tmp =0.0, fbuf = 0.0;
mapi i%maxcell;
for(j=ringid; j<=last; j+=maxcell) /* for j in mycols *

if(j>i)

idx = j/maxcell; /* local col index *
j dx - I; / * row Indox */
tmp +- a~idx]lJdx]*sollidxj;

/* fan-in begins ... *
if(i 1= (rdim - 1))

/* compute new origin *
nid = ringid - mapi;
if(nid<o)
nid +- maxcell;

if(nid -= 1)
send a buf((char *)&tmp, sizeof(float));

if(nid 1= 1 && nid 1= 0)

receive -a buf((char *)&fbuf, sizeof(float));
tmp += fbuf;
send-a-buf((char *)&tmp, sizeof(float));

if(nid -- 0)

receive -a buf((char *) &fbuf, sizeof(float));
tmp += fbuf;

/* and of fan-in *

if(1((i-ringid)%maxcell)) /* if I in niycols *
sol(i/maxcell] =(xv(iJ tmp)/a[i/maxcell](iJ;

/* for i=1 to n *

/* tri_solver *

void
gather g(a, cols)
matrix-a;
int cols;

matrix mp -a;
int 1, J;
mnt num-send = ringid,

num recv - num send -1

float biif~rdiinJ;

if (ringid==O)
nurn-recv -maxcell - 1;

A-I13

if(num_send)

/* send out cols of local columns *
for(i=O; i<cols; i++)
send-a_buf~lchar *) mpllcol~s -1-i], rdim*elsize);

if(num-recv && (ringid != 0))

for(i=0; i<num -recv; i++)
for(j=O; j<cols; j++)

recdive a buf((char *) buf, rdim*elsize);A
send -a - u?((char *) buf, rdim*elsize);

if (ringid==0)

/* redistribute local columns in cell 0 *
for(i=l; i<cols; i++)
strcpy((char *) mp(i*maxcell), (char *)mp~iJ, rdim*elsize);

for(i=l; i<=num recv; i++)
for(j=0; J<cols; j++)
reciv ia - uf((char *)mp[rdim -i -j*maxcell], rdim*elsize);

/* qatherg */

void free mem(a, cn)
matrix a;.
int cn;

mnt 1;
for(i=0; i<cn; i++)

free(a~i]);
free (a);
/* free_mem

A-i14

REPORT DOCUMENTATION PAGE Fo.Appr0o40

Public reporting burden for this collection of information Is estimated to arage I hour per response, Including the time for reviewtng Instructions, searchlng existIng data sources, gathering and
maintaining the data needed. and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any otheraspect of this collection of informatIon, Including
auggeaionsfor reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215.Jefferson Davis Highway. Suite 1204. Arlington. VA 22202-4302.
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave D 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1992 Final

4. TITLE AND SUBTrTLE 5. FUNDING NUMBERS

AN IMPLEMENTATION OF THE MVDR BEAMFORMER ON THE INTEL PE: 0602314N
iWARP SYSTEM WU: DN308291

6. AUTHOR(S)

J. Z. Lou

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Naval Command, Control and Ocean Surveillance Center (NCCOSC) REPORT NUMBER

RDT&E Division (NRaD) NRaD TD 2282
San Diego, CA 92152-5000

9. SPONSORNG/MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Office of Naval Technology
Office of the Chief of Naval Research
Arlington, VA 22217

11. SUPPLEMENTARY NOTES

112 DISTRIBUTION/AVAILABILrIY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Manmum 200 Wontis)

This report discusses the implementation of the minimum Variance Distortionless Response (MVDR) beamformer
on the Intel iWarp system. A unidirectional ring and a full connection of processors were used in the implementations.
The MVDR computation basically consists of a matrix factorization and a triangular system solver. A parallel Cholesky
Factorization and a parallel QR factorization were implemented. A "fan-in" parallel algorithm was used for the triangle
system solver. Using the unidirectional ring connection, the QR factorization achieved a 90% efficiency on 4 processors
and a 64% efficiency on 16 processors: the Cholesky factorization achieved a 83% efficiency on 4 processors and a 44%
efficiency on 16 processors. Using the unidirectonal ring connection and QR factorization, the MVDR beamformer
achieved a 83% efficiency on 4 processors and 34% on 16 processors. Using the full connection of 4 processors, a 20%
performance improvement has been obtained on MVDR as compared with the unidirectional ring connection. The par-
allel processing performance in terms of MFLOPS is still low, which is expected considering the low node performance
on a C code using software release 2.3.

14. SUBJECT TERMS 15. NUMBER OF PAGES

40

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURTY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 7540.01 -280-800 Standard form 20 (FRONT)

UNCLASSIFIED

21a NAME OF RESPONSIBLE INDIVIDUAL 21b. TELEPHONE (lnclud.Aree Code) 21c. OFFICE SYMBOL

J. Z. Lou (619) 553-2529 Code 421

i

NSN 754"1-280-6600 SOW-O-d form W6 (BACK)

UNCLASSIFIED

INITIAL DISTRIBUTION

Code 0012 Patent Counsel (1)
Code 0144 R. November (1)

Code 144 V. Ware (1)

Code 40 R. C. Kolb (1)
Code 42 J. A. Salzmann (1)
Code 421 D. L. Conwell (1)
Code 421 J. Lou (7)

Code 952B J. Puleo (1)
Code 961 Archive/Stock (6)
Code 964B Library (2)

Defense Technical Information Center

Alexandria, VA 22304-6145 (4)

NCCOSC Washington Liaison Office

Washington, DC 20363-5100

Center for Naval Analyses

Alexandria, VA 22302-0268

Navy Acquisition, Research & Development

Information Center (NARDIC)
Washington, DC 20360-5000

